Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species
- PMID: 21556887
- DOI: 10.1007/s10863-011-9356-5
Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species
Abstract
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.
Similar articles
-
Mitochondrial uncoupling proteins in unicellular eukaryotes.Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):792-9. doi: 10.1016/j.bbabio.2009.12.005. Epub 2009 Dec 21. Biochim Biophys Acta. 2010. PMID: 20026010 Review.
-
Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.Biochimie. 2014 Jul;102:124-36. doi: 10.1016/j.biochi.2014.03.003. Epub 2014 Mar 19. Biochimie. 2014. PMID: 24657599
-
During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway.Biochim Biophys Acta. 2012 Feb;1817(2):353-62. doi: 10.1016/j.bbabio.2011.11.007. Epub 2011 Nov 22. Biochim Biophys Acta. 2012. PMID: 22138628
-
Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels.Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H147-56. doi: 10.1152/ajpheart.00759.2014. Epub 2015 Apr 24. Am J Physiol Heart Circ Physiol. 2015. PMID: 25910810
-
Uncoupling proteins and the control of mitochondrial reactive oxygen species production.Free Radic Biol Med. 2011 Sep 15;51(6):1106-15. doi: 10.1016/j.freeradbiomed.2011.06.022. Epub 2011 Jun 24. Free Radic Biol Med. 2011. PMID: 21762777 Review.
Cited by
-
Wolbachia pipientis grows in Saccharomyces cerevisiae evoking early death of the host and deregulation of mitochondrial metabolism.Microbiologyopen. 2019 Apr;8(4):e00675. doi: 10.1002/mbo3.675. Epub 2018 Jun 13. Microbiologyopen. 2019. PMID: 29897678 Free PMC article.
-
Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation.Free Radic Biol Med. 2019 Aug 20;140:279-294. doi: 10.1016/j.freeradbiomed.2019.03.030. Epub 2019 Mar 29. Free Radic Biol Med. 2019. PMID: 30935869 Free PMC article. Review.
-
Coupling/Uncoupling Reversibility in Isolated Mitochondria from Saccharomyces cerevisiae.Life (Basel). 2021 Nov 27;11(12):1307. doi: 10.3390/life11121307. Life (Basel). 2021. PMID: 34947838 Free PMC article.
-
Mitochondrial uncoupling proteins UCP4 and UCP5 from the Pacific white shrimp Litopenaeus vannamei.J Bioenerg Biomembr. 2019 Apr;51(2):103-119. doi: 10.1007/s10863-019-09789-5. Epub 2019 Feb 22. J Bioenerg Biomembr. 2019. PMID: 30796582
-
Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha.Appl Environ Microbiol. 2020 Jul 20;86(15):e00678-20. doi: 10.1128/AEM.00678-20. Print 2020 Jul 20. Appl Environ Microbiol. 2020. PMID: 32471916 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases