Rapid microfluidic perfusion enabling kinetic studies of lipid ion channels in a bilayer lipid membrane chip
- PMID: 21556947
- PMCID: PMC3343723
- DOI: 10.1007/s10439-011-0323-4
Rapid microfluidic perfusion enabling kinetic studies of lipid ion channels in a bilayer lipid membrane chip
Abstract
There is growing recognition that lipids play key roles in ion channel physiology, both through the dynamic formation and dissolution of lipid ion channels and by indirect regulation of protein ion channels. Because existing technologies cannot rapidly modulate the local (bio)chemical conditions at artificial bilayer lipid membranes used in ion channel studies, the ability to elucidate the dynamics of these lipid-lipid and lipid-protein interactions has been limited. Here we demonstrate a microfluidic system supporting exceptionally rapid perfusion of reagents to an on-chip bilayer lipid membrane, enabling the responses of lipid ion channels to dynamic changes in membrane boundary conditions to be probed. The thermoplastic microfluidic system allows initial perfusion of reagents to the membrane in less than 1 s, and enables kinetic behaviors with time constants below 10 s to be directly measured. Application of the platform is demonstrated toward kinetic studies of ceramide, a biologically important lipid known to self-assemble into transmembrane ion channels, in response to dynamic treatments of small ions (La(3+)) and proteins (Bcl-x(L) mutant). The results reveal the broader potential of the technology for studies of membrane biophysics, including lipid ion channel dynamics, lipid-protein interactions, and the regulation of protein ion channels by lipid micro domains.
Figures





Similar articles
-
Effects of membrane lipids on ion channel structure and function.Cell Biochem Biophys. 2003;38(2):161-90. doi: 10.1385/CBB:38:2:161. Cell Biochem Biophys. 2003. PMID: 12777713 Review.
-
Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.Biomed Microdevices. 2009 Feb;11(1):17-22. doi: 10.1007/s10544-008-9205-4. Biomed Microdevices. 2009. PMID: 18584329
-
Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.Biosens Bioelectron. 2007 Jan 15;22(6):1111-5. doi: 10.1016/j.bios.2006.04.013. Epub 2006 May 30. Biosens Bioelectron. 2007. PMID: 16730973
-
Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.Lab Chip. 2008 Apr;8(4):602-8. doi: 10.1039/b716388f. Epub 2008 Feb 29. Lab Chip. 2008. PMID: 18369516
-
Micro- and nano-technologies for lipid bilayer-based ion-channel functional assays.Chem Asian J. 2015 Jun;10(6):1266-74. doi: 10.1002/asia.201403391. Epub 2015 Feb 20. Chem Asian J. 2015. PMID: 25702941 Review.
Cited by
-
Hydrogel-stabilized droplet bilayers for high speed solution exchange.Sci Rep. 2013 Nov 5;3:3139. doi: 10.1038/srep03139. Sci Rep. 2013. PMID: 24190577 Free PMC article.
-
Electro-optical BLM chips enabling dynamic imaging of ordered lipid domains.Lab Chip. 2012 Sep 7;12(17):3142-9. doi: 10.1039/c2lc40077d. Epub 2012 Jun 22. Lab Chip. 2012. PMID: 22728885 Free PMC article.
-
Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip.Biomicrofluidics. 2015 Jan 9;9(1):014103. doi: 10.1063/1.4905313. eCollection 2015 Jan. Biomicrofluidics. 2015. PMID: 25610515 Free PMC article.
-
Dynamics of ceramide channels detected using a microfluidic system.PLoS One. 2012;7(9):e43513. doi: 10.1371/journal.pone.0043513. Epub 2012 Sep 12. PLoS One. 2012. PMID: 22984432 Free PMC article.
-
Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface.Micromachines (Basel). 2018 May 22;9(5):253. doi: 10.3390/mi9050253. Micromachines (Basel). 2018. PMID: 30424186 Free PMC article.
References
-
- Antonov VF, Petrov VV, Molnar AA, Predvoditelev DA, Ivanov AS. Appearance of single-ion channels in unmodified lipid bilayer-membranes at the phase-transition temperature. Nature. 1980;283:585–586. - PubMed
-
- Antonov VF, Smirnova EY, Shevchenko EV. Electric-field increases the phase-transition temperature in the bilayer-membrane of phosphatidic-acid. Chem. Phys. Lipids. 1990;52:251–257. - PubMed
-
- Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death—mechanistic aspects and methodological issues. Eur. J. Biochem. 1999;264:687–701. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials