Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:715:35-49.
doi: 10.1007/978-94-007-0940-9_3.

Adhesion mechanisms of Borrelia burgdorferi

Affiliations
Review

Adhesion mechanisms of Borrelia burgdorferi

Styliani Antonara et al. Adv Exp Med Biol. 2011.

Abstract

The Borrelia are widely distributed agents of Lyme disease and Relapsing Fever. All are vector-borne zoonotic pathogens, have segmented genomes, and enigmatic mechanisms of pathogenesis. Adhesion to mammalian and tick substrates is one pathogenic mechanism that has been widely studied. At this point, the primary focus of research in this area has been on Borrelia burgdorferi, one agent of Lyme disease, but many of the adhesins of B. burgdorferi are conserved in other Lyme disease agents, and some are conserved in the Relapsing Fever Borrelia. B. burgdorferi adhesins that mediate attachment to cell-surface molecules may influence the host response to the bacteria, while adhesins that mediate attachment to soluble proteins or extracellular matrix components may cloak the bacterial surface from recognition by the host immune system as well as facilitate colonization of tissues. While targeted mutations in the genes encoding some adhesins have been shown to affect the infectivity and pathogenicity of B. burgdorferi, much work remains to be done to understand the roles of the adhesins in promoting the persistent infection required to maintain the bacteria in reservoir hosts.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alitalo A, Meri T, Lankinen H, Seppälä I, Lahdenne P, Hefty PS, Akins D, Meri S. Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol. 2002;169:3847–3853. - PubMed
    1. Alitalo A, Meri T, Rämö L, Jokiranta TS, Heikkilä T, Seppälä IJ, Oksi J, Viljanen M, Meri S. Complement evasion by Borrelia burgdorferi : serum-resistant strains promote C3b inactivation. Infect Immun. 2001;69:3685–3691. - PMC - PubMed
    1. Antonara S, Chafel RM, LaFrance M, Coburn J. Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol. 2007;66:262–276. - PMC - PubMed
    1. Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol. 2007;65:1547–1558. - PubMed
    1. Barthold SW, Moody KD, Terwilliger GA, Jacoby RO, Steere AC. An animal model for Lyme arthritis. Ann NY Acad Sci. 1988;539:264–273. - PubMed

Publication types

MeSH terms

LinkOut - more resources