Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 1;437(3):505-13.
doi: 10.1042/BJ20101764.

Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings

Affiliations

Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings

Elizabeth Allen et al. Biochem J. .

Abstract

ACN1 (acetate non-utilizing 1) is a short-chain acyl-CoA synthetase which recycles free acetate to acetyl-CoA in peroxisomes of Arabidopsis. Pulse-chase [2-(13)C]acetate feeding of the mutant acn1-2 revealed that acetate accumulation and assimilation were no different to that of wild-type, Col-7. However, the lack of acn1-2 led to a decrease of nearly 50% in (13)C-labelling of glutamine, a major carbon sink in seedlings, and large decreases in primary metabolite levels. In contrast, acetyl-CoA levels were higher in acn1-2 compared with Col-7. The disappearance of eicosenoic acid was slightly delayed in acn1-2 indicating only a small effect on the rate of lipid breakdown. A comparison of transcript levels in acn1-2 and Col-7 showed that induced genes included a number of metabolic genes and also a large number of signalling-related genes. Genes repressed in the mutant were represented primarily by embryogenesis-related genes. Transcript levels of glyoxylate cycle genes also were lower in acn1-2 than in Col-7. We conclude that deficiency in peroxisomal acetate assimilation comprises only a small proportion of total acetate use, but this affects both primary metabolism and gene expression. We discuss the possibility that ACN1 safeguards against the loss of carbon as acetate from peroxisomes during lipid mobilization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms