Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;9(3):685-9.
doi: 10.1002/j.1460-2075.1990.tb08160.x.

Okadaic acid, an inhibitor of protein phosphatase 1 in Paramecium, causes sustained Ca2(+)-dependent backward swimming in response to depolarizing stimuli

Affiliations

Okadaic acid, an inhibitor of protein phosphatase 1 in Paramecium, causes sustained Ca2(+)-dependent backward swimming in response to depolarizing stimuli

S Klumpp et al. EMBO J. 1990 Mar.

Abstract

Backward swimming is a stereotypic behavioural response of Paramecium. It is triggered by depolarizing stimuli, which open calcium channels in the excitable ciliary membrane. The influx of Ca2+ causes the reversal of ciliary beat and initiates backward swimming. Here, we demonstrate that the protein phosphatase inhibitor okadaic acid does not affect the normal forward swimming pattern of Paramecium, but greatly extends the duration of backward swimming as initiated by depolarization caused by a rise in extracellular K+. Chelation of external Ca2+ results in an immediate resumption of forward swimming. The results suggest that the voltage-operated calcium channel is inactivated by a dephosphorylation event, and that okadaic acid blocks this dephosphorylation without any effect on the motile apparatus of the cilia. In addition, Paramecium is unique among eukaryotic cells, in that okadaic acid inhibits just one protein phosphatase, namely a type 1 enzyme, 75% of which is tightly associated with the excitable ciliary membrane. The type 2A protein phosphatases in Paramecium are unaffected by okadaic acid. The results indicate that protein phosphatase 1 is the enzyme responsible for the dephosphorylation and closure of the calcium channel in Paramecium.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Biochem. 1987 Jun 1;165(2):261-6 - PubMed
    1. FEBS Lett. 1987 Nov 2;223(2):340-6 - PubMed
    1. Nature. 1989 Jan 5;337(6202):78-81 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8983-7 - PubMed
    1. Eur J Biochem. 1983 May 2;132(2):255-61 - PubMed

Publication types