Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May 10;52(6):3051-9.
doi: 10.1167/iovs.10-6916.

AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects

Affiliations
Review

AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects

Zongchao Han et al. Invest Ophthalmol Vis Sci. .

Abstract

Gene therapy based on delivery of viral and nonviral vectors has shown great promise for the treatment of human ocular diseases; however, limitations have consistently prevented its widespread clinical application. Viral vectors have generally been better in terms of efficiency but have safety concerns. Nonviral vectors, on the other hand, offer safety but have often been disappointing in terms of efficiency of nuclear delivery and gene expression. Extensive animal studies have reported significant progress using both systems, but thus far only a few studies have shown promise in human clinical trials. This article reviews both viral and nonviral work with focus on two candidates for clinical ocular application--AAV and nanoparticles. Of particular interest are various requirements for successful clinical application of these technologies including vector trafficking, delivery, specific gene expression, and treatment safety, and tolerance.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Results of a PubMed search (number of “hits”) with the key words “viral and AAV” and “nonviral and NPs” from 2000 to 2009. The AAV and NPs hits are part of the total “viral” and “nonviral” hits, respectively.
Figure 2.
Figure 2.
Diagram of AAV versus CK30PEG NP trafficking. (A) First trafficking steps involve AAV and CK30PEG NP binding to cognate receptors such as HSPG for AAV and nucleolin for NPs. (B) AAV undergoes endocytosis, usually by a clathrin-mediated pathway and is processed through the endosomal system before being released. CK30PEG NPs are internalized via raft-mediated endocytosis and traffic to the nucleus, using the cellular microtubule system. (C) The mechanisms for AAV and CK30PEG NP entry in the nucleus are not clear but may rely on diffusion through the nuclear pore complex (NPC) or processing by nuclear receptors.

References

    1. Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007: an update. J Gene Med. 2007;9:833–842 - PubMed
    1. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into human: immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323:570–578 - PubMed
    1. Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–990 - PMC - PubMed
    1. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med. 2008;358:2240–2248 - PMC - PubMed
    1. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008;358:2231–2239 - PubMed

Publication types

Substances