Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr;54(4):1225-32.
doi: 10.1111/j.1471-4159.1990.tb01952.x.

Alpha 1-adrenergic receptor mediates arachidonic acid release in spinal cord neurons independent of inositol phospholipid turnover

Affiliations

Alpha 1-adrenergic receptor mediates arachidonic acid release in spinal cord neurons independent of inositol phospholipid turnover

R Y Kanterman et al. J Neurochem. 1990 Apr.

Abstract

The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.

PubMed Disclaimer

MeSH terms

LinkOut - more resources