Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr 4;82(7):589-95.
doi: 10.1093/jnci/82.7.589.

Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases

Affiliations

Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases

O A Alvarez et al. J Natl Cancer Inst. .

Abstract

Metalloproteinases secreted by tumor cells play an important role in metastasis. In the present study, we determined whether an inhibitor of these proteinases could inhibit the ability of tumor cells to degrade collagen and to metastasize. Metalloproteinases with degradative activities for type I collagen, type IV collagen, gelatin, and casein were secreted by a highly metastatic rat embryo cell line (4R) transfected by c-Ha-ras1 (also known as HRAS1). These metalloproteinases were identified by sodium dodecyl sulfate substrate-polyacrylamide gel electrophoresis as 92-kilodalton and 68-kilodalton gelatinolytic enzymes and 48-kilodalton and 45-kilodalton caseinolytic proteinases. A recombinant human tissue inhibitor of metalloproteinases (rTIMP) completely inhibited the proteolytic activities of these enzymes and was also a potent inhibitor of the proteolytic degradation of collagen by intact c-Ha-ras1-transfected cells. The ability of these cells to colonize the lungs after intravenous injection into nude mice was inhibited by 83% when rTIMP was repeatedly injected intraperitoneally into the animals. These data demonstrate that rTIMP is a potent inhibitor of the metalloproteinase activities of these cells and can also inhibit their metastatic potential.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources