Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 22;344(6264):358-60.
doi: 10.1038/344358a0.

Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides

Affiliations

Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides

L Perrouault et al. Nature. .

Abstract

Homopyrimidine oligonucleotides bind to homopurine-homopyrimidine sequences of duplex DNA forming a local triple helix. This binding can be demonstrated either directly by a footprinting technique, gel assays, or indirectly by inducing irreversible reactions in the target sequence, such as photocrosslinking or cleavage. Binding occurs in the major groove with the homopyrimidine oligonucleotide orientated parallel to the homopurine strand. Thymine and protonated cytosine in the oligonucleotide form Hoogsteen-type hydrogen bonds with A.T and G.C Watson-Crick base pairs, respectively. Here we report that an 11-residue homopyrimidine oligonucleotide covalently attached to an ellipticine derivative by its 3' phosphate photo-induces cleavage of the two strands of a target homopurine--homopyrimidine sequence. To our knowledge, this is the first reported case of a sequence-specific artificial photoendonuclease. In addition we show that a strong binding site for a free ellipticine derivative is induced at the junction between the triplex and duplex structures on the 5' side of the bound oligonucleotide. On irradiation, cleavage is observed on both strands of DNA. This opens new possibilities for inducing irreversible reactions on DNA at specific sites by the synergistic action of a triple helix-forming oligonucleotide and an intercalating agent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources