Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 12;473(7346):203-7.
doi: 10.1038/nature10074.

Evolution and metabolic significance of the urea cycle in photosynthetic diatoms

Affiliations

Evolution and metabolic significance of the urea cycle in photosynthetic diatoms

Andrew E Allen et al. Nature. .

Abstract

Diatoms dominate the biomass of phytoplankton in nutrient-rich conditions and form the basis of some of the world's most productive marine food webs. The diatom nuclear genome contains genes with bacterial and plastid origins as well as genes of the secondary endosymbiotic host (the exosymbiont), yet little is known about the relative contribution of each gene group to diatom metabolism. Here we show that the exosymbiont-derived ornithine-urea cycle, which is similar to that of metazoans but is absent in green algae and plants, facilitates rapid recovery from prolonged nitrogen limitation. RNA-interference-mediated knockdown of a mitochondrial carbamoyl phosphate synthase impairs the response of nitrogen-limited diatoms to nitrogen addition. Metabolomic analyses indicate that intermediates in the ornithine-urea cycle are particularly depleted and that both the tricarboxylic acid cycle and the glutamine synthetase/glutamate synthase cycles are linked directly with the ornithine-urea cycle. Several other depleted metabolites are generated from ornithine-urea cycle intermediates by the products of genes laterally acquired from bacteria. This metabolic coupling of bacterial- and exosymbiont-derived proteins seems to be fundamental to diatom physiology because the compounds affected include the major diatom osmolyte proline and the precursors for long-chain polyamines required for silica precipitation during cell wall formation. So far, the ornithine-urea cycle is only known for its essential role in the removal of fixed nitrogen in metazoans. In diatoms, this cycle serves as a distribution and repackaging hub for inorganic carbon and nitrogen and contributes significantly to the metabolic response of diatoms to episodic nitrogen availability. The diatom ornithine-urea cycle therefore represents a key pathway for anaplerotic carbon fixation into nitrogenous compounds that are essential for diatom growth and for the contribution of diatoms to marine productivity.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8021-6 - PubMed
    1. Mol Biol Evol. 2007 Jan;24(1):26-53 - PubMed
    1. Annu Rev Genet. 2008;42:83-107 - PubMed
    1. Mol Plant. 2010 Nov;3(6):973-96 - PubMed
    1. Science. 2009 Jun 26;324(5935):1724-6 - PubMed

Publication types

LinkOut - more resources