Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 19;74(11):2487-97.
doi: 10.1016/j.jprot.2011.04.018. Epub 2011 Apr 30.

Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3)

Affiliations

Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3)

B McDonagh et al. J Proteomics. .

Abstract

Yeast Grx2 plays a role in the antioxidant glutathione linked defense acting on the redox status of protein cysteines, but the exact action or its specificity is not known. Moreover, it localizes in cytosol and mitochondria where it can exert different functions. To search for functions of Grx2 we determined the differential "Thiolic Redox Proteome" of control and peroxide-treated yeast mutant cells lacking the gene for Grx2 or expressing Grx2 exclusively in the mitochondria. Forty-two proteins have been identified that have alternative redox oxidation states as a consequence of Grx2 absence from the cell or expression in the mitochondria and absence from the cytosol. The precise cysteine residues affected have been mapped for each protein. One target protein, Rib3p, which has as yet an undefined function in respiration, was confirmed to have its Cys56 reversibly S-glutathionylated in vitro in a Grx2p dependent process. Grx2-dependent redox changes in key enzymes of glutamate consuming amino acid biosynthetic pathways could favor glutathione biosynthesis. Other target proteins are involved in membrane fusion, cell wall structure and ribosome assembly, but others are of unknown function. These results provide clues on the metabolic hot spots of redox regulatory mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources