Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 May 11;19(5):613-21.
doi: 10.1016/j.str.2011.02.015.

A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds

Affiliations
Comparative Study

A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds

Ke Chen et al. Structure. .

Abstract

Protein function annotation and rational drug discovery rely on the knowledge of binding sites for small organic compounds, and yet the quality of existing binding site predictors was never systematically evaluated. We assess predictions of ten representative geometry-, energy-, threading-, and consensus-based methods on a new benchmark data set that considers apo and holo protein structures with multiple binding sites for biologically relevant ligands. Statistical tests show that threading-based Findsite outperforms other predictors when its templates have high similarity with the input protein. However, Findsite is equivalent or inferior to some geometry-, energy-, and consensus-based methods when the similarity is lower. We demonstrate that geometry-, energy-, and consensus-based predictors benefit from the usage of holo structures and that the top four methods, Findsite, Q-SiteFinder, ConCavity, and MetaPocket, perform better for larger binding sites. Predictions from these four methods are complementary, and our simple meta-predictor improves over the best single predictor.

PubMed Disclaimer

Publication types