Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;102(14):7139-46.
doi: 10.1016/j.biortech.2011.03.086. Epub 2011 Mar 31.

Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production

Affiliations

Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production

Chen Zhang et al. Bioresour Technol. 2011 Jul.

Abstract

Pseudomonas aeruginosa CH7, isolated from activated sludge, was able not only to isomerize and degrade beta-cypermethrin but also to utilize it as the sole source of carbon and energy for growth and produce biosurfactant. The strain effectively degraded beta-cypermethrin with inocula biomass of 0.1-0.2 g L(-1) at 25-35°C, pH 6-9, and a final concentration of beta-cypermethrin 25-900 mg L(-1). Via response surface methodology analysis, we found the optimal condition was 29.4°C, pH 7.0, and inocula biomass of 0.15 g L(-1); under these conditions, about 90% of the beta-cypermethrin could be degraded within 12 days. Noticeably, biosurfactant was detected in the MSM culture of strain CH7, suggesting that the biosurfactant (rhamnolipid) could potentially enhance the degradation of beta-cypermethrin by promoting the dissolution, adsorption, and absorption of the hydrophobic compounds. Therefore, CH7 may serve as a promising strain in the bioremediation of wastewater and soil polluted by beta-cypermethrin.

PubMed Disclaimer

Publication types

MeSH terms