Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;38(1):27-34.
doi: 10.1016/j.ijantimicag.2011.03.011. Epub 2011 May 13.

Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin

Affiliations

Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin

Ninell P Mortensen et al. Int J Antimicrob Agents. 2011 Jul.

Abstract

Enteroaggregative Escherichia coli (EAEC) are bacterial pathogens that cause watery diarrhoea, which is often persistent and can be inflammatory. The antibiotic ciprofloxacin is used to treat EAEC infections, but a full understanding of the antimicrobial effects of ciprofloxacin is needed for more efficient treatment of bacterial infections. In this study, it was found that sub-minimum inhibitory concentrations (sub-MICs) of ciprofloxacin had an inhibitory effect on EAEC adhesion to glass and mammalian HEp-2 cells. It was also observed that bacterial surface properties play an important role in bacterial sensitivity to ciprofloxacin. In an EAEC mutant strain where the hydrophobic positively charged surface protein dispersin was absent, sensitivity to ciprofloxacin was reduced compared with the wild-type strain. Identified here are several antimicrobial effects of ciprofloxacin at sub-MIC concentrations indicating that bacterial surface hydrophobicity affects the response to ciprofloxacin. Investigating the effects of sub-MIC doses of antibiotics on targeted bacteria could help to further our understanding of bacterial pathogenicity and elucidate future antibiotic treatment modalities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources