New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of Buchnera aphidicola from the aphid Cinara tujafilina
- PMID: 21571878
- PMCID: PMC3127723
- DOI: 10.1128/AEM.00141-11
New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of Buchnera aphidicola from the aphid Cinara tujafilina
Abstract
The symbiotic association between aphids (Homoptera) and Buchnera aphidicola (Gammaproteobacteria) started about 100 to 200 million years ago. As a consequence of this relationship, the bacterial genome has undergone a prominent size reduction. The downsize genome process starts when the bacterium enters the host and will probably end with its extinction and replacement by another healthier bacterium or with the establishment of metabolic complementation between two or more bacteria. Nowadays, several complete genomes of Buchnera aphidicola from four different aphid species (Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistacea, and Cinara cedri) have been fully sequenced. C. cedri belongs to the subfamily Lachninae and harbors two coprimary bacteria that fulfill the metabolic needs of the whole consortium: B. aphidicola with the smallest genome reported so far and "Candidatus Serratia symbiotica." In addition, Cinara tujafilina, another member of the subfamily Lachninae, closely related to C. cedri, also harbors "Ca. Serratia symbiotica" but with a different phylogenetic status than the one from C. cedri. In this study, we present the complete genome sequence of B. aphidicola from C. tujafilina and the phylogenetic analysis and comparative genomics with the other Buchnera genomes. Furthermore, the gene repertoire of the last common ancestor has been inferred, and the evolutionary history of the metabolic losses that occurred in the different lineages has been analyzed. Although stochastic gene loss plays a role in the genome reduction process, it is also clear that metabolism, as a functional constraint, is also a powerful evolutionary force in insect endosymbionts.
Figures



Similar articles
-
Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera-Serratia Symbiotic Consortia between the Distantly Related Lachninae Aphids Tuberolachnus salignus and Cinara cedri.Genome Biol Evol. 2016 May 22;8(5):1440-58. doi: 10.1093/gbe/evw085. Genome Biol Evol. 2016. PMID: 27190007 Free PMC article.
-
Settling down: the genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life.Genome Biol Evol. 2014 Jun 19;6(7):1683-98. doi: 10.1093/gbe/evu133. Genome Biol Evol. 2014. PMID: 24951564 Free PMC article.
-
Evolution of the secondary symbiont "Candidatus serratia symbiotica" in aphid species of the subfamily lachninae.Appl Environ Microbiol. 2008 Jul;74(13):4236-40. doi: 10.1128/AEM.00022-08. Epub 2008 May 23. Appl Environ Microbiol. 2008. PMID: 18502932 Free PMC article.
-
Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum.C R Biol. 2009 Nov;332(11):1034-49. doi: 10.1016/j.crvi.2009.09.007. Epub 2009 Oct 14. C R Biol. 2009. PMID: 19909925 Review.
-
Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont.Cell Mol Life Sci. 2011 Apr;68(8):1297-309. doi: 10.1007/s00018-011-0645-2. Epub 2011 Mar 10. Cell Mol Life Sci. 2011. PMID: 21390549 Free PMC article. Review.
Cited by
-
A cross-taxon analysis of insect-associated bacterial diversity.PLoS One. 2013 Apr 16;8(4):e61218. doi: 10.1371/journal.pone.0061218. Print 2013. PLoS One. 2013. PMID: 23613815 Free PMC article.
-
Host-specific co-evolution likely driven by diet in Buchnera aphidicola.BMC Genomics. 2024 Feb 8;25(1):153. doi: 10.1186/s12864-024-10045-3. BMC Genomics. 2024. PMID: 38326788 Free PMC article.
-
Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium.Front Microbiol. 2017 Nov 22;8:2290. doi: 10.3389/fmicb.2017.02290. eCollection 2017. Front Microbiol. 2017. PMID: 29213256 Free PMC article.
-
Interchangeable allies: exploiting development and selection to swap symbionts.Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1923-4. doi: 10.1073/pnas.1424099112. Epub 2015 Feb 9. Proc Natl Acad Sci U S A. 2015. PMID: 25675514 Free PMC article. No abstract available.
-
Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome.Genome Biol Evol. 2013;5(2):351-61. doi: 10.1093/gbe/evt011. Genome Biol Evol. 2013. PMID: 23355305 Free PMC article.
References
-
- Akaike H. 1974. New look at statistical-model identification. Trans. Automat. Control 19:716–723
-
- Ausubel F. M. 1999. Short protocols in molecular biology: a compendium of methods from Current protocols in molecular biology, 4th ed. Wiley, New York, NY
-
- Baumann P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59:155–189 - PubMed
-
- Buchner P. 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York, NY
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials