Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C
- PMID: 2157496
 - DOI: 10.1016/0167-4889(90)90069-p
 
Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C
Abstract
The kinetics of phosphorylation of an integral membrane enzyme, Na+/K(+)-ATPase, by calcium- and phospholipid-dependent protein kinase C (PKC) were characterized in vitro. The phosphorylation by PKC occurred on the catalytic alpha-subunit of Na+/K(+)-ATPase in preparations of purified enzyme from dog kidney and duck salt-gland and in preparations of duck salt-gland microsomes. The phosphorylation required calcium (Ka approximately 1.0 microM) and was stimulated by tumor-promoting phorbol ester (12-O-tetradecanoylphorbol 13-acetate) in the presence of a low concentration of calcium (0.1 microM). PKC phosphorylation of Na+/K(+)-ATPase was rapid and plateaued within 30 min. The apparent Km of PKC for Na+/K(+)-ATPase as a substrate was 0.5 microM for dog kidney enzyme and 0.3 microM for duck salt-gland enzyme. Apparent substrate inhibition of PKC activity was observed at concentrations of purified salt-gland Na+/K(+)-ATPase greater than 1.0 microM. Phosphorylation of purified kidney and salt-gland Na+/K+ ATPases occurred at both serine and threonine residues. The 32P-phosphopeptide pattern on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis after hydroxylamine cleavage of pure 32P-phosphorylated alpha subunit was the same for the two sources of enzyme, which suggests that the phosphorylation sites are similar. The results indicate that Na+/K(+)-ATPase may serve as a substrate for PKC phosphorylation in intact cells and that the Na+/K(+)-ATPase could be a useful in vitro model substrate for PKC interaction with integral membrane proteins.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
