Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification
- PMID: 21576280
- PMCID: PMC3494049
- DOI: 10.1093/schbul/sbr037
Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification
Abstract
Background: Neuropsychological deficits predate overt psychosis and overlap with the impairments in the established disease. However, to date, no single neurocognitive measure has shown sufficient power for a prognostic test. Thus, it remains to be determined whether multivariate neurocognitive pattern classification could facilitate the diagnostic identification of different at-risk mental states (ARMS) for psychosis and the individualized prediction of illness transition.
Methods: First, classification of 30 healthy controls (HC) vs 48 ARMS individuals subgrouped into 20 "early," 28 "late" ARMS subjects was performed based on a comprehensive neuropsychological test battery. Second, disease prediction was evaluated by categorizing the neurocognitive baseline data of those ARMS individuals with transition (n = 15) vs non transition (n = 20) vs HC after 4 years of follow-up. Generalizability of classification was estimated by repeated double cross-validation.
Results: The 3-group cross-validated classification accuracies in the first analysis were 94.2% (HC vs rest), 85.0% (early at-risk subjects vs rest), and, 91.4% (late at-risk subjects vs rest) and 90.8% (HC vs rest), 90.8% (converters vs rest), and 89.0% (nonconverters vs rest) in the second analysis. Patterns distinguishing the early or late ARMS from HC primarily involved the verbal learning/memory domains, while executive functioning and verbal IQ deficits were particularly characteristic of the late ARMS. Disease transition was mainly predicted by executive and verbal learning impairments.
Conclusions: Different ARMS and their clinical outcomes may be reliably identified on an individual basis by evaluating neurocognitive test batteries using multivariate pattern recognition. These patterns may have the potential to substantially improve the early recognition of psychosis.
Figures



References
-
- Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12:426–445. - PubMed
-
- Hawkins KA, McGlashan TH, Quinlan D, et al. Factorial structure of the Scale of Prodromal Symptoms. Schizophr Res. 2004;68:339–347. - PubMed
-
- Brewer WJ, Wood SJ, McGorry PD, et al. Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia. Am J Psychiatry. 2003;160:1790–1794. - PubMed
-
- Francey SM, Jackson HJ, Phillips LJ, Wood SJ, Yung AR, McGorry PD. Sustained attention in young people at high risk of psychosis does not predict transition to psychosis. Schizophr Res. 2005;79:127–136. - PubMed
-
- Lencz T, Smith CW, McLaughlin D, et al. Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biol Psychiatry. 2006;59:863–871. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical