Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;20(4):425-32.
doi: 10.1097/MNH.0b013e3283478611.

Using yeast as a model to study membrane proteins

Affiliations
Review

Using yeast as a model to study membrane proteins

Julia Petschnigg et al. Curr Opin Nephrol Hypertens. 2011 Jul.

Abstract

Purpose of review: Many cellular processes are controlled via either stable or transient protein-protein interactions (PPIs). Protein complexes are 'molecular machines' in which multiple interactive partners carry out various cellular functions. Given that almost a third of the proteome consists of membrane proteins and that more than 50% of currently available drugs are targeted toward them, investigation of membrane protein complexes has taken center stage over the past years. Thus, gaining an in-depth understanding of PPI networks will give us more insight into the functional relationship as well as downstream effectors of protein complexes, hence opening strategies for new drug target definitions.

Recent findings: Studying membrane proteins in yeast has recently been applied to many different classes of proteins with diverse functions and structures including membrane transporters. Techniques such as the split-ubiquitin membrane yeast two-hybrid or variants of the protein-fragment complementation assay have been successfully applied to both large-scale genome-wide screens and as smaller-scale PPI studies in a reliable and robust fashion.

Summary: Yeast-based methods to study membrane PPI in vivo offer a powerful tool for the investigation of protein complexes from various organisms, including mammals. The investigation of global protein maps will serve as a foundation for mechanistic and quantitative studies of poorly characterized gene products and disease-associated proteins. Identification of PPIs is also of great interest for drug discovery as many human diseases result from abnormal PPIs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances