Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 11;6(5):e19530.
doi: 10.1371/journal.pone.0019530.

Cancer screening by systemic administration of a gene delivery vector encoding tumor-selective secretable biomarker expression

Affiliations

Cancer screening by systemic administration of a gene delivery vector encoding tumor-selective secretable biomarker expression

Andrew W Browne et al. PLoS One. .

Abstract

Cancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector. Virus replication, cytotoxicity and biomarker production were low in quiescent normal human foreskin keratinocytes and high in cancer cells in vitro. Following intravenous injection of virus >90% of tumor-bearing mice exhibited higher levels of biomarker than non-tumor-bearing mice and upon necropsy, we detected virus exclusively in tumors. Our strategy of forcing tumors to secrete a serum biomarker could be useful for cancer screening in high-risk patients, and possibly for monitoring response to therapy. In addition, because oncolytic vectors for tumor specific gene delivery are cytotoxic, they may supplement our screening strategy as a "theragnostic" agent. The cancer screening approach presented in this work introduces a paradigm shift in the utility of gene delivery which we foresee being improved by alternative vectors targeting gene delivery and expression to tumors. Refining this approach will usher a new era for clinical cancer screening that may be implemented in the developed and undeveloped world.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Overall strategy for exogenous cancer biomarkers.
(a) Steps for cancer screening strategy are as follows: 1) Cancer-targeting Herpes Simplex Virus (HSV) is injected systemically. 2) Engineered HSV selectively replicates in tumors while being cleared from healthy non-cancerous tissues. 3) Biomarker is selectively produced in tumors. 4) Blood samples are collected and analyzed for biomarker levels. 5) Serum levels of exogenously delivered biomarker are higher in tumor bearing mice than healthy tumor-free mice. (b) Gene maps for wild-type HSV and novel recombinant rQ-M38G.
Figure 2
Figure 2. Differential sensitivity of cell lines to virus infection.
(a) Gaussia luciferase (GLuc) transgene expression, (b) virus replication, and (c) cytotoxicity following infection of Vero cells and a panel of human tumor cell lines with rQ-M38G (MOI = 0.001).
Figure 3
Figure 3. Detection of tumor presence by serum biomarker levels.
(a) Time course of GLuc expression in renal subcapsule (r.s.c) SK-NEP_Luc-bearing and tumor-free mice injected systemically with 1.2×107 pfu or rQ-M38G. Numbers in legend represent individual mice. (b) GLuc expression and in vivo imaging of SK-NEP_Luc-bearing mice four days following systemic injection of 1.2×107 pfu of rQ-M38G. Serum GLuc levels for mice injected with tumor and control that did not receive tumor injections (bar graph), and in vivo luciferase imaging of mice that received tumor cell injections.
Figure 4
Figure 4. Virus biodistribution.
(a) GFP immunofluoresence in SK-NEP_Luc-bearing mice with and without systemic virus administration. Mice receiving virus (#1 and #2) showed selective GFP expression in tumor, while mice receiving no virus (No Virus Control) showed global GFP-negativity. Scale bar = 15 microns. (b) Biodistribution of virus in mice with SK-NEP_Luc tumors following systemic administration as determined by qPCR for viral genomes.
Figure 5
Figure 5. Sensitivity limits of detection.
a) in vivo imaging of two mice (i and ii) with vastly different SKNEP-Luc tumor burdens. b) Serum GLuc concentration in mouse i, ii and four tumor-free control mice 4 days following systemic infection with 1×107 pfu of rQ-M38G. c) Hematoxylin and eosin macroscopic images of tumor bearing kidneys (T = tumor, scale bars = 1 mm) and insets of microscopic tumor foci in the renal parenchyma of mouse ii (scale bar = 200 µm).

Similar articles

Cited by

References

    1. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advan Enzyme Regul. 2001;41:189–207. - PubMed
    1. Maeda H, Fanga J, Inutsuka T, Kitamotoc Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. International Immunopharmacology. 2003;3:319–328. - PubMed
    1. Heneweer C, Holland J, Divilov V, Carlin S, Lewis J. Magnitude of Enhanced Permeability and Retention Effect in Tumors with Different Phenotypes: 89Zr-Albumin as a Model System. J Nucl Med. 2011 [Epub ahead of print] - PMC - PubMed
    1. Kirpotin DB, Drummond DarylC, Shao Yi, Shalaby M Refaat, Hong Keelung, Nielsen UlrikB, Marks JamesD, Benz ChristopherC, Park JohnW. Antibody Targeting of Long-Circulating Lipidic Nanoparticles Does Not Increase Tumor Localization but Does Increase Internalization in Animal Models. Cancer Res. 2006;66:6732–6740. - PubMed
    1. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. Journal of Controlled Release. 2007;120:18–26. - PubMed

Publication types

LinkOut - more resources