Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;6(4):361-70.
doi: 10.3109/17435390.2011.579632. Epub 2011 May 18.

Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna

Affiliations

Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna

Chun-Mei Zhao et al. Nanotoxicology. 2012 Jun.

Abstract

Silver nanoparticles (AgNPs) are now widely used in antibacterial and personal care products. However, the underlying physicochemical mechanisms leading to the toxicity of AgNPs are still under debate. The present study revealed the different effects of three surface coatings (including lactate, polyvinylpyrrolidone, and sodium dodecylbenzene sulfonate, as AgNPs-L, AgNPs-P and AgNPs-S, respectively) on the acute toxicity of AgNPs to a model freshwater cladoceran Daphnia magna. Significant difference in mortality was observed among these three surface coatings of AgNPs, with the 48-h 50% lethal concentrations (48-h LC50s) of AgNPs-L, AgNPs-P and AgNPs-S being 28.7, 2.0 and 1.1 μg/L, respectively. In contrast, when the daphnids were exposed to soluble Ag released from AgNPs-L and AgNPs-P, the difference in the 48-h LC50s between the two surface coatings (1.1 μg/L and 0.57 μg/L, respectively) decreased significantly. These 48-h LC50s were comparable to that of AgNO₃ (0.88 μg/L), indicating that soluble Ag was the primarily cause of the observed toxicity of AgNPs. Indeed, the surface coatings influenced the dissolution of AgNPs into soluble Ag, resulting in the different toxicities of AgNP to the daphnids. Additionally, the 48-h bioaccumulation of AgNPs in daphnids was also dependent on the characteristics of the nanoparticles, such as particle size and surface coating. Our results point to the need to consider the effects of surface coating on the toxicity of AgNPs in environmental risk assessments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources