Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;22(3):355-63.
doi: 10.1515/RNS.2011.028. Epub 2011 May 13.

Current perspectives on potential role of albumin in neuroprotection

Affiliations
Review

Current perspectives on potential role of albumin in neuroprotection

Kanaiyalal D Prajapati et al. Rev Neurosci. 2011.

Abstract

Albumin is the most abundant plasma protein synthesised mainly in the liver. It is also a major component of extracellular fluids including cerebrospinal fluid, interstitial fluid and lymph. Albumin has several biochemical properties including regulation of colloid osmotic pressure of plasma, transportation of hormones, fatty acids, drugs and metabolites across plasma, regulation of microvascular permeability, antioxidant activity, anti-thrombotic activity and anti-inflammatory activity. This multifunctional protein has been implicated in many neurological diseases owing to its ability to regulate hemodynamic properties of the brain circulation as well as the direct neuroprotective actions on neuronal and glial cells. In this review, we summarise various neuroprotective actions of the albumin in the brain. In experimental ischemic stroke, exogenous human serum albumin administration has been found to be neuroprotective via reducing brain swelling, prevention of post-ischemic thrombosis, anti-oxidant activity, hemodilution and increasing the perfusion to the ischemic tissue. Also, human serum albumin administration is currently under clinical trials for treatment of cerebral ischemia. In the experimental models of Alzheimer's disease, albumin has been implicated in neuroprotection by inhibiting polymerisation and enhancing the clearance of amyloid β. The direct neuroprotective actions on neuronal and glial cells are mediated via endogenously produced albumin or cellular uptake of blood derived albumin. These neuroprotective effects of albumin are partly attributed to anti-oxidant property and modulation of intracellular signalling of neuronal or glial cells. The recent finding of de novo synthesis of albumin in microglial cells directs us to explore newer roles of this endogenously produced multifunctional protein in normal as well as pathological conditions of the brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources