Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression
- PMID: 21593570
- DOI: 10.3233/JAD-2011-110080
Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression
Abstract
Dysregulation of histone acetylation has been implicated in the onset of age-associated memory impairment and the pathogenesis of neurodegenerative diseases. Elevation of histone acetylation via administration of histone deacetylase (HDAC) inhibitors is currently being pursued as a novel therapeutic avenue to treat memory impairment linked to Alzheimer's disease (AD). Here we show that severe amyloid pathology correlates with a pronounced dysregulation of histone acetylation in the forebrain of APPPS1-21 mice. Importantly, prolonged treatment with the pan-HDAC inhibitor sodium butyrate improved associative memory in APPPS1-21 mice even when administered at a very advanced stage of pathology. The recovery of memory function correlated with elevated hippocampal histone acetylation and increased expression of genes implicated in associative learning. These data advance our understanding of the potential applicability of HDAC inhibitors for the treatment of AD and suggest that HDAC inhibitors may have beneficial effects even when administered long after the onset of disease-associated symptoms.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
