Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 19;511(2):310-8.
doi: 10.1016/0006-8993(90)90176-c.

Sodium-dependent D-aspartate 'binding' is not a measure of presynaptic neuronal uptake sites in an autoradiographic assay

Affiliations
Free article

Sodium-dependent D-aspartate 'binding' is not a measure of presynaptic neuronal uptake sites in an autoradiographic assay

J T Greenamyre et al. Brain Res. .
Free article

Abstract

The binding of D-[3H]aspartate to sections of rat brain was examined in an autoradiographic assay. Binding was entirely dependent on the presence of sodium ions, but not chloride ions, and was optimal at 2 degrees C. D-Aspartate bound rapidly, reached equilibrium within 20 min and remained stable for 45 min. The rate of dissociation was relatively rapid with a t1/2 of 56 s, but was not as fast as anticipated, perhaps because of some sequestration of ligand. Binding had a Kd of 6.8 +/- 1.2 microM and a Bmax of 49.4 +/- 8.6 pmol/mg protein. The high Bmax value may further indicate some sequestration of D-aspartate. L-Glutamate, unlabeled D-aspartate, and D,L-threo-hydroxyaspartate, a potent inhibitor of synaptosomal uptake, each competed for D-[3H]aspartate binding with IC50s of 7.0 +/- 4.3 microM, 5.4 +/- 1.5 microM, and 2.5 +/- 1.0 microM, respectively. N-methyl-D-aspartate (NMDA), quisqualate, and kainate had no affinity for this site. The regional distribution of D-aspartate binding sites was unique and did not conform to the distribution of neuronal uptake sites described by others. Striatal D-aspartate binding was unaffected by unilateral decortication or striatal quinolinic acid lesions. In contrast, binding to NMDA, quisqualate, and kainate receptors was reduced by 80-90% by quinolinate lesions of the striatum. The results of D-aspartate binding after lesions strongly suggest that this site is not associated with either lesioned glutamatergic afferents or intrinsic neurons of the striatum; it may be associated with glia.

PubMed Disclaimer

Publication types