Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;90(6):1162-9.
doi: 10.3382/ps.2010-01113.

Litter ammonia generation: moisture content and organic versus inorganic bedding materials

Affiliations
Free article

Litter ammonia generation: moisture content and organic versus inorganic bedding materials

D M Miles et al. Poult Sci. 2011 Jun.
Free article

Abstract

Negative impacts on the environment, bird well-being, and farm worker health indicate the need for abatement strategies for poultry litter NH(3) generation. Type of bedding affects many parameters related to poultry production including NH(3) losses. In a randomized complete block design, 3 trials compared the cumulative NH(3) volatilization for laboratory-prepared litter (4 bedding types mixed with excreta) and commercial litter (sampled from a broiler house during the second flock on reused pine wood chips). Litters were assessed at the original moisture content and 2 higher moisture contents. Broiler excrement was mixed with pine wood shavings, rice hulls, sand, and vermiculite to create litter samples. Volumetrically uniform litter samples were placed in chambers receiving humidified air where the exhaust passed through H(3)BO(3) solution, trapping litter-emitted NH(3). At the original moisture content, sand and vermiculite litters generated the most NH(3) (5.3 and 9.1 mg of N, respectively) whereas wood shavings, commercial, and rice hull litters emitted the least NH(3) (0.9-2.6 mg of N). For reducing NH(3) emissions, the results support recommendations for using wood shavings and rice hulls, already popular bedding choices in the United States and worldwide. In this research, the organic bedding materials generated the least NH(3) at the original moisture content when compared with the inorganic materials. For each bedding type, incremental increases in litter moisture content increased NH(3) volatilization. However, the effects of bedding material on NH(3) volatilization at the increased moisture levels were not clearly differentiated across the treatments. Vermiculite generated the most NH(3) (26.3 mg of N) at the highest moisture content. Vermiculite was a novel bedding choice that has a high water absorption capacity, but because of high NH(3) generation, it is not recommended for further study as broiler bedding material. Controlling unnecessary moisture inputs to broiler litter is a key to controlling NH(3) emissions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources