Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 27;29(12):2939-45.
doi: 10.1021/bi00464a008.

Protonmotive activity of cytochrome c oxidase: control of oxidoreduction of the heme centers by the protonmotive force in the reconstituted beef heart enzyme

Affiliations

Protonmotive activity of cytochrome c oxidase: control of oxidoreduction of the heme centers by the protonmotive force in the reconstituted beef heart enzyme

N Capitanio et al. Biochemistry. .

Abstract

This paper contributes to the characterization of partial steps of electron and proton transfer in mitochondrial cytochrome c oxidase with respect to their membrane arrangement and involvement in energy-linked protonmotive activity. It is shown that delta psi controls electron flow from cytochrome c to heme a is consistent with the view that the latter center is buried in the membrane in a central position. The pressure exerted by delta psi on oxidation of heme alpha 3 by O2 indicates also that this center is buried in the membrane at some distance from the inner side and is consistent with observations showing that protons consumed in the reduction of O2 to H2O derive from the inner space. Electron flow from heme alpha to heme alpha 3 is shown to be specifically controlled by delta pH and in particular by the pH of the inner phase. Analysis of the effect of DCCD treatment of oxidase vesicles reveals that concentrations of this reagent which result in selective modification of subunit III (Prochaska et al., 1981) produce inhibition of redox-linked proton release. Higher concentrations of DCCD which result also in modification of subunits II and IV (Prochaska et al., 1981) cause inhibition of the pH-dependent electron-transfer step from heme alpha to heme alpha 3.

PubMed Disclaimer

Similar articles

Cited by

Publication types