Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Feb;52(2):317-22.
doi: 10.1016/j.yjmcc.2011.05.001. Epub 2011 May 11.

Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte

Affiliations
Review

Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte

Sanjeewa A Goonasekera et al. J Mol Cell Cardiol. 2012 Feb.

Abstract

No other inorganic molecule known in biology is considered as versatile as Ca(2+). In a vast majority of cell types, Ca(2+) acts as a universal second messenger underlying critical cellular processes varying from gene transcription to cell death. Although the role of Ca(2+) in myocyte contraction has been known for over a century, it was only more recently that this divalent cation has been implicated in mediating reactive signal transduction to promote cardiac hypertrophy. However, it remains unclear how Ca(2+)-dependent signaling pathways are regulated/activated in a cardiac myocyte given the prevailing conditions throughout the cytosol where Ca(2+) concentration oscillates between 100 nM and upwards of 1-2 μM during each contractile cycle. In this review we will examine three hypotheses put forward to explain how Ca(2+) might still function as a hypertrophic signaling molecule in cardiac myocytes and discuss the current literature that supports each of these views. This article is part of a special issue entitled "Local Signaling in Myocytes."

PubMed Disclaimer

LinkOut - more resources