Infection with paramyxoviruses stimulates synthesis of cellular polypeptides that are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose
- PMID: 216013
- PMCID: PMC393130
- DOI: 10.1073/pnas.75.12.6120
Infection with paramyxoviruses stimulates synthesis of cellular polypeptides that are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose
Abstract
Infection of several types of cultured cells with the paramyxoviruses simian virus 5 and Sendai virus stimulates synthesis of four polypeptides (I-IV) with molecular weights of approximately 99,000, 97,000, 86,000, and 78,000, respectively. That these are host polypeptides encoded in cellular mRNAs has been shown by the inhibition of their synthesis by actinomycin D and by the similarity of the peptide maps of them and of polypeptides with the same electrophoretic mobility from uninfected cells. Peptide mapping as well as identical migration in polyacrylamide gels has also indicated that polypeptides I, II, and IV are the same as plasma membrane polypeptides whose synthesis is enhanced in cells transformed by Rous sarcoma virus and in normal cells by glucose deprivation or treatment with 2-deoxyglucose. Polypeptides I and II appear to be the same polypeptides, with the observed differences in migration reflecting the glycosylation of polypeptide I, a relationship previously shown to exist between polypeptides in glucose-deprived and glucose-fed cells. Infection with paramyxoviruses does not significantly increase the transport of glucose by cells, and the maintenance of a high concentration of glucose in the medium does not prevent the enhanced synthesis of these polypeptides. This is in contrast to the situation in transformed cells in which stimulation of synthesis of these polypeptides is secondary to depletion of glucose in the medium due to increased glucose uptake by the cells. Thus, although paramyxovirus infection and transformation by Rous sarcoma virus result in stimulation of the synthesis of the same membrane polypeptides, the mechanism of stimulation differs.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
