Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;33(8):1800-6.
doi: 10.1016/j.neurobiolaging.2011.04.008. Epub 2011 May 23.

Vascular inflammation in cerebral small vessel disease

Affiliations
Free article

Vascular inflammation in cerebral small vessel disease

Rob P W Rouhl et al. Neurobiol Aging. 2012 Aug.
Free article

Abstract

Cerebral small vessel disease (CSVD) is considered to be caused by an increased permeability of the blood-brain barrier and results in enlargement of Virchow Robin spaces (VRs), white matter lesions, brain microbleeds, and lacunar infarcts. The increased permeability of the blood-brain barrier may relate to endothelial cell activation and activated monocytes/macrophages. Therefore, we hypothesized that plasma markers of endothelial activation (adhesion molecules) and monocyte/macrophage activation (neopterin) relate to CSVD manifestations. In 163 first-ever lacunar stroke patients and 183 essential hypertensive patients, we assessed CSVD manifestations on brain magnetic resonance imaging (MRI) and levels of C-reactive protein (CRP), neopterin, as well as circulating soluble adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin). Neopterin, sICAM-1 and sVCAM-1 levels were higher in patients with extensive CSVD manifestations than in those without (p < 0.01). Neopterin levels independently related to higher numbers of enlarged Virchow Robin spaces (p < 0.001). An inflammatory process with activated monocytes/macrophages may play a role in the increased permeability of the blood brain barrier in patients with CSVD.

PubMed Disclaimer

Publication types

MeSH terms