Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;13(6):693-9.
doi: 10.1038/ncb2241. Epub 2011 May 22.

Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway

Affiliations

Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway

Brice Marcet et al. Nat Cell Biol. 2011 Jun.

Erratum in

  • Nat Cell Biol. 2011 Oct;13(10):1280

Abstract

Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.

PubMed Disclaimer

References

    1. Nature. 2007 May 3;447(7140):97-101 - PubMed
    1. Development. 1999 Nov;126(21):4715-28 - PubMed
    1. Cell Cycle. 2010 Nov 15;9(22):4579-83 - PubMed
    1. Biostatistics. 2003 Apr;4(2):249-64 - PubMed
    1. Proc Am Thorac Soc. 2008 Aug 15;5(6):689-94 - PubMed

Publication types

MeSH terms