PyMC: Bayesian Stochastic Modelling in Python
- PMID: 21603108
- PMCID: PMC3097064
PyMC: Bayesian Stochastic Modelling in Python
Abstract
This user guide describes a Python package, PyMC, that allows users to efficiently code a probabilistic model and draw samples from its posterior distribution using Markov chain Monte Carlo techniques.
Figures













References
-
- Akaike H. Information Theory as an Extension of the Maximum Likelihood Principle. In: Petrov BN, Csaki F, editors. Second International Symposium on Information Theory. Akademiai Kiado; Budapest: 1973. pp. 267–281.
-
- Alted F, Vilata I, Prater S, Mas V, Hedley T, Valentino A, Whitaker J. PyTables User’s Guide: Hierarchical Datasets in Python – Release 2.2. 2010. URL http://www.pytables. org/
-
- Azzalini A. The Skew-Normal Probability Distribution (and Related Distributions, such as the Skew-t) 2010. URL http://azzalini.stat.unipd.it/SN/
-
- Bernardo JM, Berger J, Dawid AP, Smith JFM, editors. Bayesian Statistics 4. Oxford University Press; Oxford: 1992.
-
- Brooks SP, Catchpole EA, Morgan BJT. Bayesian Animal Survival Estimation. Statistical Science. 2000;15:357–376.
Grants and funding
LinkOut - more resources
Full Text Sources