Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2011 May 23:9:62.
doi: 10.1186/1741-7015-9-62.

Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

Affiliations
Comment

Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

Federica Sotgia et al. BMC Med. .

Abstract

The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al., directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More specifically, alleviation of mitochondrial oxidative stress, via transgenic over-expression of catalase (an anti-oxidant enzyme) targeted to mitochondria, was sufficient to lower tumor grade (from high-to-low) and to dramatically reduce metastatic tumor burden by >12-fold. Here, we discuss these new findings and place them in the context of several other recent studies showing that oxidative stress directly contributes to tumor progression and metastasis. These results have important clinical and translational significance, as most current chemo-therapeutic agents and radiation therapy increase oxidative stress, and, therefore, could help drive tumor recurrence and metastasis. Similarly, chemo- and radiation-therapy both increase the risk for developing a secondary malignancy, such as leukemia and/or lymphoma. To effectively reduce mitochondrial oxidative stress, medical oncologists should now re-consider the use of powerful anti-oxidants as a key component of patient therapy and cancer prevention. Please see related research article: http://www.biomedcentral.com/1471-2407/11/191.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Tumor evolution is fueled by mitochondrial oxidative stress. The experiments by Goh et al. directly show that blocking mitochondrial ROS inhibits metastasis, indicating that mitochondrial oxidative stress promotes tumor progression and metastasis. The observed effects most likely involve the effects of ROS on both cancer cells and their surrounding tumor stroma. Cellular processes activated by ROS include DNA damage, autophagy/mitophagy, and aerobic glycolysis. Complementary studies have shown that ROS-induced activation of autophagy and aerobic glycolysis in cancer associated fibroblasts provide recycled nutrients (pyruvate, lactate, ketones, and glutamine, among others) for anabolic cancer cell growth, and protects these cancer cells against apoptosis. Importantly, anti-oxidants will prevent the oxidative stress, reducing tumor progression and metastasis. NAC, N-acetyl-cysteine; SOD2, mitochondrial superoxide dismutase; M-catalase, mitochondrially targeted catalase.

Comment on

References

    1. Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12:28–36. doi: 10.1159/000110296. - DOI - PubMed
    1. Singh PN, Sabate J, Fraser GE. Does low meat consumption increase life expectancy in humans? Am J Clin Nutr. 2003;78:526S–532S. - PubMed
    1. Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr. 2009;89:1607S–1612S. doi: 10.3945/ajcn.2009.26736K. - DOI - PMC - PubMed
    1. Nechuta S, Lu W, Chen Z, Zheng Y, Gu K, Cai H, Zheng W, Shu XO. Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2011;20:262–271. doi: 10.1158/1055-9965.EPI-10-1072. - DOI - PMC - PubMed
    1. Goodson AG, Cotter MA, Cassidy P, Wade M, Florell SR, Liu T, Boucher KM, Grossman D. Use of oral N-acetylcysteine for protection of melanocytic nevi against UV-induced oxidative stress: towards a novel paradigm for melanoma chemoprevention. Clin Cancer Res. 2009;15:7434–7440. doi: 10.1158/1078-0432.CCR-09-1890. - DOI - PMC - PubMed

Publication types

MeSH terms