Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun 5;265(16):9319-26.

Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene

Affiliations
  • PMID: 2160973
Free article

Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene

R Kornreich et al. J Biol Chem. .
Free article

Abstract

Fabry disease, an inborn error of glycosphingolipid catabolism, results from mutations in the X-linked gene encoding the lysosomal enzyme, alpha-galactosidase A (EC 3.2.1.22). Six alpha-galactosidase A gene rearrangements that cause Fabry disease were investigated to assess the role of Alu repetitive elements and short direct and/or inverted repeats in the generation of these germinal mutations. The breakpoints of five partial gene deletions and one partial gene duplication were determined by either cloning and sequencing the mutant gene from an affected hemizygote, or by polymerase chain reaction amplifying and sequencing the genomic region containing the novel junction. Although the alpha-galactosidase A gene contains 12 Alu repetitive elements (representing approximately 30% of the 12-kilobase (kb) gene or approximately 1 Alu/1.0 kb), only one deletion resulted from an Alu-Alu recombination. The remaining five rearrangements involved illegitimate recombinational events between short direct repeats of 2 to 6 base pairs (bp) at the deletion or duplication breakpoints. Of these rearrangements, one had a 3' short direct repeat within an Alu element, while another was unusual having two deletions of 1.7 kb and 14 bp separated by a 151-bp inverted sequence. These findings suggested that slipped mispairing or intrachromosomal exchanges involving short direct repeats were responsible for the generation of most of these gene rearrangements. There were no inverted repeat sequences or alternating purine-pyrimidine regions which may have predisposed the gene to these rearrangements. Intriguingly, the tetranucleotide CCAG and the trinucleotide CAG (or their respective complements, CTGG and CTG) occurred within or adjacent to the direct repeats at the 5' breakpoints in three and four of the five alpha-galactosidase A gene rearrangements, respectively, suggesting a possible functional role in these illegitimate recombinational events. These studies indicate that short direct repeats are important in the formation of gene rearrangements, even in human genes like alpha-galactosidase A that are rich in Alu repetitive elements.

PubMed Disclaimer

Publication types

LinkOut - more resources