Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May 26;70(4):626-44.
doi: 10.1016/j.neuron.2011.05.003.

Constructing and deconstructing stem cell models of neurological disease

Affiliations
Free article
Review

Constructing and deconstructing stem cell models of neurological disease

Steve S W Han et al. Neuron. .
Free article

Abstract

Among the disciplines of medicine, the study of neurological disorders is particularly challenging. The fundamental inaccessibility of the human neural types affected by disease prevents their isolation for in vitro studies of degenerative mechanisms or for drug screening efforts. However, the ability to reprogram readily accessible tissue from patients into pluripotent stem (iPS) cells may now provide a general solution to this shortage of human neurons. Gradually improving methods for directing the differentiation of patient-specific stem cells has enabled the production of several neural cell types affected by disease. Furthermore, initial studies with stem cell lines derived from individuals with pediatric, monogenic disorders have validated the stem cell approach to disease modeling, allowing relevant neural phenotypes to be observed and studied. Whether iPS cell-derived neurons will always faithfully recapitulate the same degenerative processes observed in patients and serve as platforms for drug discovery relevant to common late-onset diseases remains to be determined.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources