Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 15;286(1-3):48-57.
doi: 10.1016/j.tox.2011.05.005. Epub 2011 May 17.

Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro

Affiliations

Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro

Alessandra Stacchiotti et al. Toxicology. .

Abstract

Mercuric chloride (HgCl₂) causes acute oxidant renal failure that affects mainly proximal tubules. Schisandrin B (Sch B), an active lignan from the fruit of Schisandra chinensis, has been successfully used to treat gentamicin nephrotoxicity, but its role against mercury damage is still largely unknown. Here we analysed in vivo and in vitro the efficacy of Sch B supplementation against HgCl₂ nephrotoxicity, focusing on histopathology, stress proteins, oxidative (cytochrome c oxidase) and nitrosactive markers (eNOS, nNOS). Wistar rats were treated with Sch B (10 mg/kg/day p.o.) or vehicle (olive oil) for 9 days, then coadministered with a single HgCl₂ nephrotoxic dose (3.5 mg/kg i.p.) and killed after 24 h. The tubular and mitochondrial damage induced by mercury was limited by Sch B coadministration in vivo. Remarkably, after Sch B and mercury challenge, HSP25, HSP72, GRP75 were reduced in the renal cortex, cytochrome c oxidase increased and eNOS and nNOS were restored in glomeruli. In contrast, NRK-52E proximal tubular cells treated with Sch B 6.25 μM plus HgCl₂ 20 μM did not show any amelioration on viability and oxidative stress in respect to HgCl₂ 20 μM alone. Moreover, after Sch B plus mercury in vitro treatment, HSP72 staining persisted while HSP25 further increased. Thus, in our experimental conditions, Sch B cotreatment afforded better protection against mercury poisoning in vivo than in vitro. This discrepancy might be partly attributable to Sch B influence on glomerular perfusion as corroborated by the recovery of vasoactive markers like macular and endothelial nitric oxide isoforms.

PubMed Disclaimer

Publication types

MeSH terms