Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 1;187(1):74-81.
doi: 10.4049/jimmunol.1002747. Epub 2011 May 27.

Forced expression of HLA-DM at the surface of dendritic cells increases loading of synthetic peptides on MHC class II molecules and modulates T cell responses

Affiliations

Forced expression of HLA-DM at the surface of dendritic cells increases loading of synthetic peptides on MHC class II molecules and modulates T cell responses

Abdul Mohammad Pezeshki et al. J Immunol. .

Abstract

Adoptive transfer of autologous dendritic cells (DCs) loaded with tumor-associated CD4 and CD8 T cell epitopes represents a promising avenue for the immunotherapy of cancer. In an effort to increase the loading of therapeutic synthetic peptides on MHC II molecules, we used a mutant of HLA-DM (DMY) devoid of its lysosomal sorting motif and that accumulates at the cell surface. Transfection of DMY into HLA-DR(+) cells resulted in increased loading of the exogenously supplied HA(307-318) peptide, as well as increased stimulation of HA-specific T cells. Also, on transduction in mouse and human DCs, DMY increased loading of HEL(48-61) and of the tumor Ag-derived gp100(174-190) peptides, respectively. Interestingly, expression of DMY at the surface of APCs favored Th1 differentiation over Th2. Finally, we found that DMY(-) and DMY(+) mouse APCs differentially stimulated T cell hybridomas sensitive to the fine conformation of peptide-MHC II complexes. Taken together, our results suggest that the overexpression of HLA-DMY at the plasma membrane of DCs may improve quantitatively, but also qualitatively, the presentation of CD4 T cell epitopes in cellular vaccine therapies for cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources