Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jun;121(6):2126-32.
doi: 10.1172/JCI58109. Epub 2011 Jun 1.

Gut microbiome, obesity, and metabolic dysfunction

Affiliations
Review

Gut microbiome, obesity, and metabolic dysfunction

Herbert Tilg et al. J Clin Invest. 2011 Jun.

Abstract

The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Microbiota regulates host metabolic functions.
The microbiota controls host physiology at multiple levels. Microbial metabolic products such as SCFAs bind to GPCRs on intestinal epithelial cells (for example, Gpr41 and Gpr43) to control energy balance, partly via the gut-derived hormone Pyy, and also to control the inflammatory responsiveness of the host. Tlr5 activation (e.g., through bacterial flagellin) presumably on epithelial or myeloid cells profoundly affects the structural composition of the intestinal microbiota, which in turn regulates appetite, weight gain, and insulin sensitivity through unknown mechanisms. Microbial signals also regulate Fiaf release from intestinal epithelial cells, which acts as an inhibitor of Lpl and thereby regulates peripheral fat storage. Through another unknown mechanism, the microbiota also regulates the energy gauge in the liver and muscle through the phosphorylation of Ampk. Glp2 ascertains epithelial barrier function, and a leaky barrier leads to exposure and activation of myeloid cells in response to microbial signals such as the Tlr4 ligand endotoxin. Fiaf, fasting-induced adipose factor; Glp2, glucagon-like peptide-2; Gpr41/43, G-protein coupled receptor; Lpl, lipoprotein lipase; Pyy, peptide YY; SCFA, short chain fatty acids.

References

    1. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–1118. - PubMed
    1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi: 10.1016/j.cell.2006.02.017. - DOI - PubMed
    1. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80. doi: 10.1053/j.gastro.2008.10.080. - DOI - PMC - PubMed
    1. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–894. doi: 10.1038/nrmicro2245. - DOI - PMC - PubMed
    1. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821. - DOI - PMC - PubMed

Publication types

MeSH terms