Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;93(5):770-86.
doi: 10.3732/ajb.93.5.770.

Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness

Affiliations
Free article

Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness

Barbara S Carlsward et al. Am J Bot. 2006 May.
Free article

Abstract

Members of tribe Vandeae (Orchidaceae) form a large, pantropical clade of horticulturally important epiphytes. Monopodial leafless members of Vandeae have undergone extreme reduction in habit and represent a novel adaptation to the canopy environment in tropical Africa, Asia, and America. To study the evolution of monopodial leaflessness, molecular and structural evidence was used to generate phylogenetic hypotheses for Vandeae. Molecular analyses used sequence data from ITS nrDNA, trnL-F plastid DNA, and matK plastid DNA. Maximum parsimony analyses of these three DNA regions each supported two subtribes within monopodial Vandeae: Aeridinae and a combined Angraecinae + Aerangidinae. Adding structural characters to sequence data resulted in trees with more homoplasy, but gave fewer trees each with more well-supported clades than either data set alone. Two techniques for examining character evolution were compared: (1) mapping vegetative characters onto a molecular topology and (2) tracing vegetative characters onto a combined structural and molecular topology. In both cases, structural synapomorphies supporting monopodial Vandeae were nearly identical. A change in leaf morphology (usually reduced to a nonphotosynthetic scale), monopodial growth habit, and aeration complexes for gas exchange in photosynthetic roots seem to be the most important characters in making the evolutionary transition to leaflessness.

PubMed Disclaimer

LinkOut - more resources