Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;32(27):6523-32.
doi: 10.1016/j.biomaterials.2011.05.047. Epub 2011 Jun 8.

Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas

Affiliations

Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas

Hung-Wei Yang et al. Biomaterials. 2011 Sep.

Abstract

The successful delivery of anti-cancer drugs relies on the simultaneous capability to actively target a specific location, a sufficient lifetime in the active form in the circulation, and traceability and quantification of drug distribution via in vivo medical imaging. Herein, a highly magnetic nanocarrier (HMNC) composed of an Fe(3)O(4) core and an aqueous-stable, self-doped poly[N-(1-one-butyric acid)]aniline (SPAnH) shell was chemically synthesized. This nanocarrier exhibited a high capacity for 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) drug loading. BCNU and o-(2-aminoethyl)polyethylene glycol (EPEG) were covalently immobilized on the surface of the HMNC to form a self-protecting magnetic nanomedicine (i.e., SPMNM) that could simultaneously provide low reticuloendothelial system uptake, high active-targeting, and in vivo magnetic resonance imaging (MRI) traceability. Meanwhile, the SPMNM was found to reduce the phagocytosis by macrophages and reduce the hydrolysis rate of BCNU. The high magnetization (approximately 1.2-fold higher than Resovist) of the HMNC allowed efficient magnetic targeting to the tumor. The synergetic drug delivery approach provided approximately a 3.4-fold improvement of the drug's half-life (from 18 h to 62 h) and significantly prolonged the median survival rate in animals that received a low dose of BCNU, compared with those that received a high dose of free BCNU (63 days for those that received 4.5 mg BCNU/kg carried by the nanocarrier versus 50 days for those that received 13.5 mg of free-BCNU). This improvement could enhance the potential of magnetic targeting therapy in clinical applications of cancer treatments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources