Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;87(14):5514-8.
doi: 10.1073/pnas.87.14.5514.

Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes

Affiliations

Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes

M F Cicirelli et al. Proc Natl Acad Sci U S A. 1990 Jul.

Abstract

A protein-tyrosine-phosphatase (PTPase 1B; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), specific for phosphotyrosyl residues, was microinjected into Xenopus oocytes. This resulted in a 3- to 5-fold increase in PTPase activity over endogenous levels. The PTPase blocked the insulin-stimulated phosphorylation of tyrosyl residues on endogenous proteins, including a protein having a molecular mass in the same range as the beta subunit of the insulin or insulin-like growth factor I receptor. PTPase 1B also blocked the activation of an S6 peptide kinase--i.e., an enzyme recognizing a peptide having the sequence RRLSSLRA found in a segment of ribosomal protein S6 and known to be activated early in response to insulin. On the other hand, the insulin stimulation of an S6 kinase, detected by using 40S ribosomes as substrate, was unaffected even though PTPase 1B partially prevented the phosphorylation of ribosomal protein S6 in vivo. Mono Q chromatography of insulin-treated oocyte extracts revealed two main peaks of S6 kinase activity. Fractions from the first peak displayed S6 peptide kinase activity that was essentially abolished in profiles from PTPase 1B-injected oocytes. Material from the second peak, which was best revealed by using 40S ribosomes as substrate and had comparatively little S6 peptide kinase activity, was minimally affected by PTPase 1B. These observations suggest that at least two distinct "S6 kinases" are involved in ribosomal protein S6 phosphorylation in vivo and that the activation pathways for these enzymes differ in their sensitivity to PTPase 1B.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1988 May 15;263(14):6722-30 - PubMed
    1. Science. 1978 Nov 17;202(4369):760-3 - PubMed
    1. Science. 1979 Sep 28;205(4413):1397-9 - PubMed
    1. Dev Biol. 1981 Jul 30;85(2):309-16 - PubMed

Publication types