Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug 9;346(6284):567-9.
doi: 10.1038/346567a0.

Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling

Affiliations

Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling

T Tanabe et al. Nature. .

Abstract

It is thought that in skeletal muscle excitation-contraction (EC) coupling, the release of Ca2+ from the sarcoplasmic reticulum is controlled by the dihydropyridine (DHP) receptor in the transverse tubular membrane, where it serves as the voltage sensor. We have shown previously that injection of an expression plasmid carrying the skeletal muscle DHP receptor complementary DNA restores EC coupling and L-type calcium current that are missing in skeletal muscle myotubes from mutant mice with muscular dysgenesis. This restored coupling resembles normal skeletal muscle EC coupling, which does not require entry of extracellular Ca2+. By contrast, injection into dysgenic myotubes of an expression plasmid carrying the cardiac DHP receptor cDNA produces L-type calcium current and cardiac-type EC coupling, which does require entry of extracellular Ca2+. To identify the regions responsible for this important functional difference between the two structurally similar DHP receptors, we have expressed various chimaeric DHP receptor cDNAs in dysgenic myotubes. The results obtained indicate that the putative cytoplasmic region between repeats II and III of the skeletal muscle DHP receptor is an important determinant of skeletal-type EC coupling.

PubMed Disclaimer

Publication types

LinkOut - more resources