Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 8;12(8):2946-56.
doi: 10.1021/bm200528z. Epub 2011 Jun 28.

Osteoid-mimicking dense collagen/chitosan hybrid gels

Affiliations

Osteoid-mimicking dense collagen/chitosan hybrid gels

Florencia Chicatun et al. Biomacromolecules. .

Abstract

Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources