Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;28(3):255-92.
doi: 10.1615/critrevtherdrugcarriersyst.v28.i3.20.

Carbohydrate molecules: an expanding horizon in drug delivery and biomedicine

Affiliations
Review

Carbohydrate molecules: an expanding horizon in drug delivery and biomedicine

Raj Kumar Shukla et al. Crit Rev Ther Drug Carrier Syst. 2011.

Abstract

This review presents successful applications of carbohydrate molecules in drug delivery, vaccine development, cancer, HIV and various other diseases based on advances in glycobiology and glycochemistry. Carbohydrate-mediated delivery could be site specific/cell specific. Carbohydrate-based delivery system has been successfully utilized for the delivery of macromolecular drugs, antigen, and potential therapeutic drug candidates. Lectin, the high affinity carbohydrate-binding nonimmune glycoproteins has specific and noncovalent binding sites for defined carbohydrates. Endogenous surface lectins of cancer cells participate in the regulation of tumor cell growth. The oligosaccharides constitute potential recognition sites for carbohydrate-mediated interactions between cells and drug carriers bearing suitable site directing molecules. The recognition of carbohydrate immunodeterminants has created great attention in the development of carbohydrate-based vaccines. Peptide mimotopes provide a strategy to augment human immunodeficiency virus 1 (HIV-1) specific carbohydrate reactive immune responses. Experimental cancer and HIV vaccines are being developed in attempts to overcome weak immunological responses to carbohydrate-rich surface antigens using carriers, adjuvants, and novel carbohydrate antigen constructs. Current carbohydrate-based vaccines are used for prostate cancer, typhus, pneumonia, and meningitis; vaccines for malaria, anthrax, and leishmaniasis are under development. This article discusses the current research involved in the role of carbohydrate molecules in targeted controlled drug delivery, immunology, and vaccine development.

PubMed Disclaimer

MeSH terms

LinkOut - more resources