Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Dec 5;347(1-2):25-9.
doi: 10.1016/j.mce.2011.05.038. Epub 2011 Jun 1.

Vitamin D and intestinal calcium absorption

Affiliations
Review

Vitamin D and intestinal calcium absorption

Sylvia Christakos et al. Mol Cell Endocrinol. .

Abstract

The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Models of vitamin D mediated intestinal calcium absorption. Left panel: Transcellular intestinal calcium absorption. 1,25(OH)2D3, through its genomic actions, stimulates active intestinal calcium absorption. The traditional model of transcellular calcium transport involves calcium influx through TRPV6, intracellular calcium transfer by calbindin (CaBP) and calcium extrusion by the plasma membrane calcium ATPase (Ca pump). Recent studies using KO mice have suggested that TRPV6 and calbindin are not critical for 1,25(OH)2D3 calcium absorption and maybe compensated by another channel or protein. Right panel: Paracellular pathway. There is increasing evidence that 1,25(OH)2D3 can enhance paracellular calcium diffusion by regulating tight junction proteins. (Reproduced with permission from Wasserman RH, 2005).

References

    1. Ajibade DV, Dhawan P, Fechner AJ, Meyer MB, Pike JW, Christakos S. Evidence for a role of prolactin in calcium homeostasis: regulation of intestinal transient receptor potential vanilloid type 6, intestinal calcium absorption, and the 25-hydroxyvitamin D(3) 1alpha hydroxylase gene by prolactin. Endocrinology. 2010;151:2974–2984. - PMC - PubMed
    1. Akhter S, Kutuzova GD, Christakos S, DeLuca HF. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys. 2007;460:227–232. - PubMed
    1. Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG. Klotho prevents renal calcium loss. J Am Soc Nephrol. 2009;20:2371–2379. - PMC - PubMed
    1. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140:4982–4987. - PubMed
    1. Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149:3196–3205. - PMC - PubMed

Publication types