Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;22(2):260-73.
doi: 10.1093/cercor/bhr036. Epub 2011 Jun 10.

Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members

Affiliations

Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members

Tyler Davis et al. Cereb Cortex. 2012 Feb.

Abstract

Category knowledge can be explicit, yet not conform to a perfect rule. For example, a child may acquire the rule "If it has wings, then it is a bird," but then must account for exceptions to this rule, such as bats. The current study explored the neurobiological basis of rule-plus-exception learning by using quantitative predictions from a category learning model, SUSTAIN, to analyze behavioral and functional magnetic resonance imaging (fMRI) data. SUSTAIN predicts that exceptions require formation of specialized representations to distinguish exceptions from rule-following items in memory. By incorporating quantitative trial-by-trial predictions from SUSTAIN directly into fMRI analyses, we observed medial temporal lobe (MTL) activation consistent with 2 predicted psychological processes that enable exception learning: item recognition and error correction. SUSTAIN explains how these processes vary in the MTL across learning trials as category knowledge is acquired. Importantly, MTL engagement during exception learning was not captured by an alternate exemplar-based model of category learning or by standard contrasts comparing exception and rule-following items. The current findings thus provide a well-specified theory for the role of the MTL in category learning, where the MTL plays an important role in forming specialized category representations appropriate for the learning context.

PubMed Disclaimer

Publication types