Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;39(9):1028-32.
doi: 10.2337/diab.39.9.1028.

IGF-I--stimulated glucose transport in human skeletal muscle and IGF-I resistance in obesity and NIDDM

Affiliations

IGF-I--stimulated glucose transport in human skeletal muscle and IGF-I resistance in obesity and NIDDM

G L Dohm et al. Diabetes. 1990 Sep.

Abstract

Based on the observation that insulinlike growth factor I (IGF-I) can stimulate glucose utilization in nondiabetic subjects and that the action of the IGF-I receptor is normal in the skeletal muscle of patients with non-insulin-dependent diabetes mellitus (NIDDM), it seems possible that IGF-I might provide an effective acute treatment for the hyperglycemia of NIDDM. Using our recently developed in vitro human muscle preparation, we investigated the hypothesis that IGF-I might be an effective alternative to insulin in stimulating glucose transport in diabetic muscle. Abdominal muscle samples from nonobese nondiabetic, obese nondiabetic, and obese NIDDM patients were obtained during elective abdominal surgery. Plasma levels of IGF-I in diabetic patients were lower than those in either of the nondiabetic groups. Binding studies with wheat-germ-agglutinin-chromatography-purified receptors demonstrated the presence of IGF-I receptors in human muscle, with IGF-I binding being approximately 24% that of insulin. There was no change in IGF-I binding in muscle from obese or diabetic subjects, and the structural characteristics of the IGF-I receptor were not altered, as determined by electrophoretic mobility. IGF-I stimulated glucose transport approximately twofold in incubated muscle from control subjects, but there was no IGF-I stimulation of transport in muscle from obese subjects with or without NIDDM. These results confirm a previous report that human muscle contains receptors for IGF-I and demonstrate for the first time that IGF-I can stimulate glucose transport in human muscle. However, muscle from obese subjects with or without NIDDM is resistant to the action of IGF-I.

PubMed Disclaimer

Publication types

LinkOut - more resources