Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;1807(9):1032-43.
doi: 10.1016/j.bbabio.2011.05.022. Epub 2011 Jun 7.

Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise

Affiliations

Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise

Gert Schansker et al. Biochim Biophys Acta. 2011 Sep.

Abstract

Experiments were carried out to identify a process co-determining with Q(A) the fluorescence rise between F(0) and F(M). With 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), the fluorescence rise is sigmoidal, in its absence it is not. Lowering the temperature to -10°C the sigmoidicity is lost. It is shown that the sigmoidicity is due to the kinetic overlap between the reduction kinetics of Q(A) and a second process; an overlap that disappears at low temperature because the temperature dependences of the two processes differ. This second process can still relax at -60°C where recombination between Q(A)(-) and the donor side of photosystem (PS) II is blocked. This suggests that it is not a redox reaction but a conformational change can explain the data. Without DCMU, a reduced photosynthetic electron transport chain (ETC) is a pre-condition for reaching the F(M). About 40% of the variable fluorescence relaxes in 100ms. Re-induction while the ETC is still reduced takes a few ms and this is a photochemical process. The fact that the process can relax and be re-induced in the absence of changes in the redox state of the plastoquinone (PQ) pool implies that it is unrelated to the Q(B)-occupancy state and PQ-pool quenching. In both +/-DCMU the process studied represents ~30% of the fluorescence rise. The presented observations are best described within a conformational protein relaxation concept. In untreated leaves we assume that conformational changes are only induced when Q(A) is reduced and relax rapidly on re-oxidation. This would explain the relationship between the fluorescence rise and the ETC-reduction.

PubMed Disclaimer

Publication types