Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;52(8):1289-301.
doi: 10.1093/pcp/pcr075. Epub 2011 Jun 14.

The four Arabidopsis reduced wall acetylation genes are expressed in secondary wall-containing cells and required for the acetylation of xylan

Affiliations

The four Arabidopsis reduced wall acetylation genes are expressed in secondary wall-containing cells and required for the acetylation of xylan

Chanhui Lee et al. Plant Cell Physiol. 2011 Aug.

Abstract

Xylan is one of the major polysaccharides in cellulosic biomass, and understanding the mechanisms underlying xylan biosynthesis will potentially help us design strategies to produce cellulosic biomass better suited for biofuel production. Although a number of genes have been shown to be essential for xylan biosynthesis, genes involved in the acetylation of xylan have not yet been identified. Here, we report the comprehensive genetic and functional studies of four Arabidopsis REDUCED WALL ACETYLATION (RWA) genes and demonstrate their involvement in the acetylation of xylan during secondary wall biosynthesis. It was found that the RWA genes were expressed in cells undergoing secondary wall thickening and their expression was regulated by SND1, a transcriptional master switch of secondary wall biosynthesis. The RWA proteins were shown to be localized in the Golgi, where xylan biosynthesis occurs. Analyses of a suite of single, double, triple and quadruple rwa mutants revealed a significant reduction in the secondary wall thickening and the stem mechanical strength in the quadruple rwa1/2/3/4 mutant but not in other mutants. Further chemical and structural analyses of xylan demonstrated that the rwa1/2/3/4 mutations resulted in a reduction in the amount of acetyl groups on xylan. In addition, the ratio of non-methylated to methylated glucuronic acid side chains was altered in the rwa1/2/3/4 mutant. Together, our results demonstrate that the four Arabidopsis RWA genes function redundantly in the acetylation of xylan during secondary wall biosynthesis.

PubMed Disclaimer

Publication types

MeSH terms