Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;53(5):456-65.
doi: 10.1002/dev.20563.

Plasticity of gray matter volume: the cellular and synaptic plasticity that underlies volumetric change

Affiliations
Review

Plasticity of gray matter volume: the cellular and synaptic plasticity that underlies volumetric change

Brenda J Anderson. Dev Psychobiol. 2011 Jul.

Abstract

Fifty years ago, Mark Rosenzweig and coworkers described environmental effects on brain chemistry and gross brain weight. William Greenough then used stereological tools, electron microscopy, and the Golgi stain to demonstrate that enrichment led to dendritic growth and synapse addition. Together these forms of plasticity accounted for cortical expansion and a reduction in cell density. In parallel with other investigators, Greenough demonstrated that these effects were not limited to the rodent, the cortex, or development, but instead generalize to many species, brain regions, and life stages. Studies of the anatomical effects of enrichment foreshadowed the recent empirical evidence for cortical volumetric increases after environmental experience and training in humans. Since research in humans is limited to regional effects, the analysis of the cellular and synaptic effects of enrichment, and their contribution to volumetric increases can inform us of the potential cellular and subcellular plasticity the leads to volume change in humans.

PubMed Disclaimer

LinkOut - more resources