Overcoming biological constraints to enable the exploitation of microalgae for biofuels
- PMID: 21680178
- DOI: 10.1016/j.biortech.2011.05.033
Overcoming biological constraints to enable the exploitation of microalgae for biofuels
Abstract
Microalgae have significant potential to form the basis of the next biofuel revolution. They have high growth and solar energy conversion rates. Furthermore, their osmotolerance, metabolic diversity and capacity to produce large amounts of lipids have attracted considerable interest. Although there are a handful of commercially successful examples of the photoautotrophic mass-culture of algae, these have focused on the production of higher value products (pigments, health-foods etc.). The technical and commercial challenges to develop an economically viable process for biofuels are considerable and it will require much further R&D. In this paper the biological constraints, with a particular focus on strain selection are discussed.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Similar articles
-
Microalgae-based biorefinery--from biofuels to natural products.Bioresour Technol. 2013 May;135:166-74. doi: 10.1016/j.biortech.2012.10.099. Epub 2012 Nov 1. Bioresour Technol. 2013. PMID: 23206809 Review.
-
Advances in microalgae engineering and synthetic biology applications for biofuel production.Curr Opin Chem Biol. 2013 Jun;17(3):489-95. doi: 10.1016/j.cbpa.2013.03.038. Epub 2013 May 16. Curr Opin Chem Biol. 2013. PMID: 23684717 Review.
-
Selection, breeding and engineering of microalgae for bioenergy and biofuel production.Trends Biotechnol. 2012 Apr;30(4):198-205. doi: 10.1016/j.tibtech.2011.11.003. Epub 2011 Dec 16. Trends Biotechnol. 2012. PMID: 22178650 Review.
-
Attached cultivation technology of microalgae for efficient biomass feedstock production.Bioresour Technol. 2013 Jan;127:216-22. doi: 10.1016/j.biortech.2012.09.100. Epub 2012 Oct 5. Bioresour Technol. 2013. PMID: 23131644
-
Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds.N Biotechnol. 2015 Dec 25;32(6):588-96. doi: 10.1016/j.nbt.2015.02.001. Epub 2015 Feb 14. N Biotechnol. 2015. PMID: 25686716 Review.
Cited by
-
Biodiversity and disease risk in an algal biofuel system: An experimental test in outdoor ponds using a before-after-control-impact (BACI) design.PLoS One. 2022 Apr 28;17(4):e0267674. doi: 10.1371/journal.pone.0267674. eCollection 2022. PLoS One. 2022. PMID: 35482813 Free PMC article.
-
Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction.Mar Drugs. 2019 Nov 13;17(11):640. doi: 10.3390/md17110640. Mar Drugs. 2019. PMID: 31766228 Free PMC article. Review.
-
Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti.J Appl Phycol. 2018;30(2):995-1003. doi: 10.1007/s10811-017-1270-8. Epub 2017 Sep 27. J Appl Phycol. 2018. PMID: 29755204 Free PMC article.
-
A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae.Plant Biotechnol J. 2016 Oct;14(10):2066-76. doi: 10.1111/pbi.12564. Epub 2016 May 28. Plant Biotechnol J. 2016. PMID: 27007496 Free PMC article.
-
Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence.Sci Rep. 2017 Aug 17;7(1):8542. doi: 10.1038/s41598-017-08428-6. Sci Rep. 2017. PMID: 28819147 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources