Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;86(1):131-9.

Inbreeding depression in smooth cordgrass (Spartina alterniflora, Poaceae) invading San Francisco Bay

Affiliations
  • PMID: 21680353
Free article

Inbreeding depression in smooth cordgrass (Spartina alterniflora, Poaceae) invading San Francisco Bay

C C Daehler. Am J Bot. 1999 Jan.
Free article

Abstract

The magnitude of inbreeding depression in invading plant populations is often presumed to be small and of little consequence. The purpose of this study was to assess the magnitude of inbreeding depression in a pollen-limited, partially self-incompatible, invading plant population. The magnitude and timing of inbreeding depression were compared among ten maternal plants sampled from a population of smooth cordgrass (Spartina alterniflora) invading San Francisco Bay. Selfed and outcrossed progeny were compared for embryo abortion, survival of seedlings, and growth/survival at the end of the first growing season in three greenhouse environments. Estimates of inbreeding depression varied among environments, with competitive environment > high-nutrient environment > low-nutrient environment. Population-level estimates of inbreeding depression ranged from 0.61 to 0.81; however, maternal plants varied significantly in their magnitude of inbreeding depression, ranging from 0.1 to 0.97. The 95% confidence interval for inbreeding depression for some maternal plants included zero. There was a significant negative correlation between the overall magnitude of inbreeding depression and self-fertility rate among maternal plants. The few maternal plants with high self-fertility carried relatively little genetic load, and their selfed progeny are likely to survive on open mudflats. The noncompetitive, pollen-limited growing conditions associated with invasion may allow self-fertility to spread in this population.

PubMed Disclaimer

LinkOut - more resources